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family will be discussed.
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INTRODUCTION TO CHEMOGENOMICS

The sequencing of the human genome [1,2] has produced
a wealth of genomic information, which the pharmaceutical
and biotechnology industries are capitalizing on in their
research efforts towards the discovery of important new
drugs. The approximately 30,000 genes found (less than the
100,000 or so anticipated genes) represent a large number of
potential targets. As others have noted, a majority of these
genes will not be appropriate drug targets [3]; therefore, the
research community has to organize their efforts such that
target validation and drug discovery proceed in a
complementary fashion. Chemogenomics represents a
parallel approach to target validation and drug discovery. In
this review, we will discuss chemogenomics as it has been
applied to the kinome – the protein kinases of the human
genome [4].

Chemogenomics can be defined as the discovery and
description of all possible drugs to all possible drug targets
[5]. The aim of chemogenomics is to apply the modern tools
and techniques of the drug discovery process in parallel to
gene families. In this way, the efficiency-enhancing tools of
modern drug discovery, such as high-throughput screening
(HTS), high-throughput synthesis, structure-based drug
design, in vitro biological assays, in vivo models, and
modern computational methods, are leveraged across
multiple targets within a gene family. A chemogenomic
approach to drug discovery exploits the technical and
informational synergies gained from targeting related
members of a gene family, thereby providing relevant
information in parallel rather than through a slower, iterative
process. Although the pharmaceutical industry has
traditionally organized its research along therapeutic areas,
chemogenomics offers an alternative and complementary
approach, since targets within a gene family can provide
access to mechanistic pathways involved in a range of
disease states. As noted previously [5], a disease indication
focus divides biological and chemical expertise across
therapeutic areas and does not exploit the synergies gained
from targeting closely related active sites. Although some in
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vitro and in vivo testing will be applicable to specific
therapeutic areas, other techniques such as HTS, expression
profiling, cell assays, physical properties measurements, and
proteome profiling may have kinome-wide applications that
provide tools and information that benefit the discovery
process for multiple targets.

In a chemogenomic approach to kinases, ATP site-
directed inhibitors are valuable reagents that are used across
the gene family. The greatest value to the discovery of new
inhibitor leads is realized when a kinase inhibitor collection
is tested across kinases irrespective of the therapeutic
indication. The compounds are ideally diverse, drug-like
molecules representing many kinase inhibitor scaffolds with
sufficient representation within a scaffold class to allow
SAR to emerge directly from the screen. When screening
identifies leads for a new target, these leads will require
optimization of potency and selectivity but should already
possess drug-like physical properties. This allows medicinal
chemistry to focus more on improving activity and
selectivity versus the target rather than solubility and
chemical stability. The optimized leads can then be used for
target validation as small molecule "chemical knockouts" in
disease models. If validation is successful, medicinal
chemistry then further optimizes the lead to provide a
preclinical candidate. As will be discussed later, this
methodology presents a challenge in information
management.

Kinases are ideally suited to a gene family approach to
drug discovery. A recent review by Manning proposes that
the human genome codes for 518 protein kinase genes,
which represents approximately 1.7% of the human genes
[4]. Comparison of the kinase chromosomal map with a map
of known disease loci reveals that 244 kinases map to
disease loci [6]. It is unlikely that all of these kinases will
be therapeutic targets; however, the recent increase of kinase-
targeted drugs in development suggests a substantial number
will be successful [7,8]. A review by Hopkins proposes that
of the approximate 30,000 genes in the human genome, only
10-14% of these represent targets that have a high
probability of binding small molecules and of these, only
600-1500 genes will be therapeutically relevant targets [3]. If
Hopkins is correct, and kinases make up approximately 22%
of the proteins that can be targeted with small molecules,
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Fig. (1). Crystal structure of the Ser/Thr kinase, GSK-3β [16].

then the number of therapeutically relevant kinases would be
in the range of 130-300. This is an attractive number of new
therapeutic targets from a gene family. These observations
show the potential for a chemogenomic approach to kinase-
targeted drug discovery and this potential is currently being
exploited in the industry as exemplified by the investment
of Novartis Pharmaceuticals in the chemogenomic research
platform of Vertex Pharmaceuticals, Inc.

This article will review the implementation of a
chemogenomic research plan directed toward the human
kinome. To fully realize the benefits of kinase
chemogenomics, all stages of research should be structured
to apply common information and reagents across the gene
family. Within the chemogenomic program at Vertex, kinase
structure, HTS, enzymology, computational chemistry,
library design, medicinal chemistry, and information
management have all been engineered to fully maximize the
synergies. The final section of the review will focus on
specific examples of the successful application of
chemogenomics to the SAPKs (Stress Activated Protein
Kinases).

STRUCTURAL BASIS FOR CHEMOGENOMICS:
THE ATP-BINDING SITE

The earliest X-ray studies of kinases characterized the
three-dimensional structure of the catalytic domain [9,10].
The structure of cAMP-dependent protein kinase [PKA] was
the first protein kinase solved by X-ray crystallography
[11,12]. As more X-ray structures of kinases were solved, it
became apparent that Ser/Thr kinases share structural
similarity not only with each other but also with Tyr kinases
[13-15]. The relative similarity -- coupled with subtle
differences that can be exploited for selectivity -- make
kinase ATP-binding sites ideal targets for reuse of the three
dimensional structural knowledge across multiple kinase
targets. This provides a sound foundation to a
chemogenomic-based approach to drug discovery.

The recently published crystal structure of GSK-3β
shown in Fig. (1) is a prototypical example of kinase
domain structure [16]. The kinase domain of GSK-3β is
approximately 300 residues long and folded in two lobes.

The N-terminal lobe contains five β-strands and one α-helix,
whereas the C-terminal lobe contains mainly α-helices. ATP
binds in a deep cleft at the interface of the two lobes. The
substrate is held in place in front of the ATP-binding site by
the activation loop that is approximately 25 residues long.
When this site is occupied with ATP and the substrate-
binding groove with a target substrate, the kinase domain
catalyzes the transfer of the ATP γ-phosphate to the
substrate.

Sequence alignments for various kinases (Fig. (2b))
show that there are significant sequence variations in the
residues of the ATP-binding site that are not involved in
phosphate transfer. The structure of AMPPNP bound to
CDK2 in Fig. (3a) shows that ATP does not occupy all the
available pockets of an ATP-binding site [17]. The ATP-
binding site can be divided into different sections that
contribute to inhibitor potency or specificity: phosphate
transfer area, glycine rich loop, upper hinge region, lower
hinge region, and a hydrophobic pocket that is indicated in
Fig. (3a) and Fig. (3b). The residues involved in the γ-
phosphate transfer are conserved among kinases – positions
4 and 19-20 in Fig. (2a). They cluster around the three
phosphates of ATP and are important for optimal phosphate
transfer. The catalytic residues align the α -helical and β-
strand domains and align the γ-phosphate with the target
residue. These residues are typically not targeted in inhibitor
design, although contacts can contribute to the potency of
the inhibitor.

The glycine rich loop Fig. (1) acts as a lid on the ATP-
binding site. It is a flexible anti-parallel β-sheet that adjusts
its conformation to the molecule occupying the ATP-
binding site. The sequence of the glycine rich loop is fairly
conserved with three glycines, two hydrophobic residues that
point into the ATP-binding site and one bulky hydrophobic
residue at the tip of the loop. The side-chain of the latter
may be pulled into the ATP-binding site depending on the
type of molecule present. The two hydrophobic residues that
point into the ATP-binding site contribute to and help
define the hydrophobic environment of the ATP-binding site
– positions 1 and 2 in Fig. (2a). This leads to the general
conclusion that the glycine rich loop contributes more to the
potency of the inhibitor than to the specificity.

The hinge region connecting the α-helical and β-strand
domains allows the two domains to rotate with respect to
each other – positions 10-16 in Fig. (2a). As shown in Fig.
(2b), there is little homology between hinge residues of
different kinases; however, the adenine portion of ATP
makes the same hydrogen bonds to the hinge residues in all
kinases: N6 donates a hydrogen to a backbone carbonyl of a
hinge residue X and N1 accepts a hydrogen from the amide
nitrogen of residue X+2. Inhibitors in the ATP-binding site
uniformly hydrogen bond with one or more hinge residues.
The residue side-chains rarely interfere with inhibitor
binding.

One of the important sequence variations found in the
ATP-binding site is the hydrophobic pocket that is formed
by residues 4, 5, 7, 8, 9, and 18 in Fig. (2a). This is a
deeply buried portion of the ATP-binding site that is not
accessed by ATP itself but is often targeted by inhibitors to
aid selectivity. Fig. (3b) shows how VK19911 (structure
shown in Fig. (4)) makes such interactions with p38α  [18].
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(a)

(b)

Fig. (2). (a). ATP-site of GSK-3β [16]. The numbers indicate the residues that affect ligand binding in the ATP-binding site. Residues
1,2,3,6,10-17 form the adenine binding pocket, residues 4,5,7,8,9,18 form the hydrophobic pocket, and residues 19-21 are conserved
catalytic residues. (b). Sequence alignment of the ATP-binding residues of receptor tyrosine kinases: INSR [88], IGF1R [89], EGFR
[90], FGFR [91], Ephb2R [92], non-receptor tyrosine kinases: SRC [93], ABL [24], HCK [94], BTK [95], CSK [96] and serine/threonine
kinases: p38α [97], ERK2 [20], JNK3 [98], CDK2 [17], GSK-3β [16]. The crystal structures of the kinases were superimposed on INSR
and the homologous residues were determined by visible inspection. Residues identical to the INSR sequence are indicated with a
dot.

The selectivity profile of inhibitors can often be explained
thorough sequence analysis of this site and use of the site
can be crucial in the design of selective inhibitors. This will
be discussed in greater detail later in the review where the
design of selective p38α inhibitors is used as an example.

The ribose group of ATP will sometimes hydrogen-bond
to hinge residue 16 in Fig. (2a) through one of its hydroxyl
substituents [17,19]. This contact is not necessarily required
for binding, since the sequence in this part of the ATP-

binding site is not conserved among kinases Fig. (2b). The
lower hinge portion, together with the glycine rich loop,
form the opening of the ATP-binding site. Approximately
60% of the kinases have an additional glycine inserted at
position 15 of the hinge Fig. (2a-b) resulting in a narrowing
of the ATP-binding site opening, which can be used to
improve the selectivity of an inhibitor class. Extending the
inhibitor toward the glycine insertion may prevent the
inhibitor from affecting a kinase that contains the insertion.
Extending the inhibitor toward the opening of the ATP-
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Fig. (3). Positioning of different ligands in the ATP-binding sites of four different kinases. (a) CDK2 in complex with AMPPNP [17];
(b) p38α  in complex with VK19911 [18]; (c) FGF-receptor in complex with PD 173074 [91]; and (d) Abl in complex with STI-571
[24]. The location of the hydrophobic pocket is indicated.

binding site can also provide an effective strategy for
improving the physical properties of compounds through the
introduction of solubilizing groups.

In many kinases, the conformation of the activation loop
(Fig. (1)) is dependent on the phosphorylation-state of this
loop. In the inactive, non-phosphorylated form, the
activation loop blocks the substrate-binding groove and the
ATP-binding site, whereas in the active, phosphorylated
state, the loop does not block the ATP-binding site or
substrate-binding groove. In serine/threonine kinases, such
as ERK and p38, the activation loop packs against the α -
helical domain, and the phosphorylated threonine binds
positive charged residues from the N- and C-terminal
domains. These conformational changes lead to proper
alignment of the two domains [20,21].

In Src-family kinases, the activation loop resides over the
substrate-binding groove. In the non-phosphorylated state,
the activation loop binds the α-C helix and blocks catalysis
[22]. Upon phosphorylation, the activation loop releases the
α -C helix and the phosphorylated residue binds two

arginines that would otherwise block the substrate-binding
groove. The large shifts that the activation loops undergo
upon phosphorylation and activation of kinases have
structural consequences for the ATP-binding sites. The N-
terminal region of the activation loop (the DFG motif) is
sometimes in close proximity to an inhibitor and a
repositioning of these residues can block inhibitor binding.
PD 173074 (Fig. (4)), shown in Fig. (3c) in complex with
FGF receptor, is a potent inhibitor of the FGF receptor
kinase but does not inhibit the insulin receptor kinase [23].
Superposition of the two kinase domains reveals that the
difference in the position of the DFG motif is one of the
reasons PD 173074 does not bind the insulin receptor. The
repositioning of the activation loop is also the reason why
STI-571 (Fig. (4)), which is shown in Fig. (3d) in complex
with Abl, only binds to the inactive and unphosphorylated
form of Abl [24]. The inactive form of Abl is unique
compared to other tyrosine kinases, which explains the
selectivity of the compound [25].

In structure-based drug design programs, the crystal
structure of the target facilitates the optimization of inhibitor
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Fig. (4). Selected kinase inhibitors: PD 173074; STI-571; VX-745; SB-203580; and VK 19911.

potency and selectivity by defining key protein-inhibitor
contacts. In chemogenomics, a family of structurally related
proteins (such as kinases) is targeted and parallel drug design
efforts are supported by multiple crystal structures from
related proteins. For kinases, the ATP-binding site is
targeted for inhibitor binding, which allows structure-
activity relationships and specificity to be understood for
each target kinase. This means that kinase targets without
crystal structures can still benefit from structural knowledge
gained from crystallographic studies of related kinases.

B U I L D I N G  T H E  K I N A S E  COMPOUND
COLLECTION

Due to the similarity of the ATP-binding sites, a
collection of ATP-competitive inhibitor scaffolds should
have broad utility across the gene family. This collection of
compounds can provide the screening hits and medicinal
chemistry leads to be used for structural analysis and kinase
target validation. Chemogenomics requires that both the
identification of hits and the hit to lead optimization process
are tightly integrated with enzymology, cell biology,
pharmacology, structural biology, and pharmacokinetics [26-
28]. A hit inhibits kinase activity in a primary screen and is
confirmed in a rigorous follow-up process. A lead is
developed from a hit that has been chosen for optimization
with a specific target. Lead optimization usually focuses on

improving potency, selectivity, and PK properties.
Optimized inhibitors can then be used for target validation.
In chemogenomics, lead optimization occurs in parallel for
multiple kinases and multiple inhibitor scaffolds. The
compound collection is continuously enriched with drug-like
molecules that have been optimized for improved potency
and selectivity, and therefore, have a set of existing SAR vs.
a number of kinases. This collection of kinase inhibitors has
a much greater likelihood of producing leads directly from
screening, and these leads may require minimal optimization
prior to target validation in the appropriate in vitro assays or
in vivo models.

HTS of small molecules against potential drug targets
has become popular for lead discovery [29,30]. The quality
of the compounds identified by screening, however, is
dependent upon the quality of the screening library. The
compounds used in HTS are usually from multiple sources
such as in-house historical compounds, purchased
commercial and private compounds, and combinatorial
libraries. The age of historical archive collections within the
pharmaceutical industry can be measured in decades, which
makes the integrity of these compounds highly suspicious.
These archive collections may be heavily populated with
scaffolds that are not optimum for targeting kinases, such as
beta-lactams, steroids, and glycosides, which would provide
few if any useful hits for kinases. In the past, the acquisition
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and library generation process has been driven by a need to
increase the size and the "diversity" of compound collections
[31], which was assumed to lead to greater success in HTS
[30]. For chemogenomics, building the compound collection
must place a high value on quality, since the leads obtained
from HTS will be used for the validation of kinases as
therapeutic targets. The chemical scaffolds represented within
the collection must also be diverse yet retain those structural
features consistent with targeting the ATP-binding site.
Compound identity, integrity, and drug-likeness in
conjunction with scaffold design must drive the
implementation, maintenance, and expansion of the kinase
screening collection.

Computational Tools

"Drug-like" is a popular term that has been reviewed by
several authors [32-34]. Although definitions vary, the term
drug-like refers to "molecules that contain functional groups
and/or have physical properties consistent with the majority
of known drugs" [32]. Evidence that compound collections
can and do move towards non-drug-like properties has been
clearly shown by the work of Lipinski in an analysis of the
Pfizer compounds synthesized between 1984 and 1994 [35].
These researchers found that compound properties, such as
molecular weight, numbers of hydrogen bond donors,
acceptors, and rotatable bonds increased over the 10-year
period. These observations, along with an analysis of known
drugs, led to the proposed "rule of 5", which is a set of
guidelines to determine whether or not a compound will be
orally bioavailable. A majority of known orally bioavailable
drugs follow these rules: hydrogen bond donors ≤5;
hydrogen bond acceptors ≤10; molecular weight ≤500; and
logP ≤5. Combinatorial libraries and compound collections
elaborated before the generalized concept of drug-like and the
"rule of 5" generally were directed towards maximum
diversity and size with little effort to exclude those
compounds that are not drug-like. HTS efforts are now
directed to the discovery of leads that can be quickly brought
forward for optimization rather than the simple identification
of hits [36]. For chemogenomics, the identification of drug-
like leads is a key to shortening the optimization process
and providing tools for validation of kinases as relevant
therapeutic targets.

In all cases, screening compounds should be chosen for
their drug-like properties; therefore, one needs to apply
"rules" or "filters" to identify the drug-like molecules. As
discussed above, one set of filters that can be applied is the
"rule of 5"; however, in an attempt to enhance the filters,
researchers at Vertex Pharmaceuticals have developed the
REOS (Rapid Elimination Of Swill) program [32,33,37].
This program not only expands upon the property filters but
also adds a set of functional group filters that can be applied,
which allows the removal of compounds containing reactive
and/or undesirable functionality. In our experience, REOS
removes 50-75% of the compounds in a typical commercial
or combinatorial library [33]. Following a REOS analysis, a
number of other computational techniques can be utilized to
enrich a screening library with compounds having a high
probability of becoming leads.

When protein crystal structures or homology models are
available, computational docking techniques can be used to

prioritize compounds for purchase or synthesis. A docking
program evaluates thousands of orientations of each small
molecule in a model of a protein active site [38]. A "scoring
function" is then used to evaluate the complementarity of the
small molecule and the active site [39]. One limitation of
docking programs is the lack of accuracy in scoring
functions used to predict binding affinity. One method of
addressing these limitations is to employ a consensus
approach that utilizes multiple scoring functions. A 1999
paper by Charifson and coworkers [40] describes the use of a
consensus approach in identifying inhibitors of a number of
targets, including p38 MAP kinase [18].

A complementary approach to compound acquisition is
to prioritize selections based on similarity to known active
compounds. A plethora of methods exist for evaluating the
similarity of two molecules [41]. Most chemical database
systems employ topological similarity metrics based on
molecular connectivity. In these methods, chemical
structures are represented as sets of constituent functional
groups [42,43]. The similarity of pairs of compounds is
assessed based on the number of functional groups that the
two molecules have in common [44]. The primary advantage
of topological methods is their speed. These methods can be
used to search millions of molecules in only a few minutes.
The disadvantage of these methods is that they tend to be
overly literal, identifying only the molecules that are close
analogs of the known ligands. The ideal similarity metric
will identify molecules that are functionally equivalent to,
yet distinct from known ligands. One method of identifying
such molecules is to employ a molecular representation
based on the three-dimensional structures of the molecules
[45]. In this approach, molecules are typically represented as
sets of lipophilic, hydrogen bonding and charged groups.
Similarity is assessed by comparing the geometric
arrangements of these groups. The advantage of these
methods is that they tend be more abstract and often lead to
identification of new chemical scaffolds. The disadvantage is
that the abstract molecular representation is less accurate and
can lead to large numbers of false positive results.

The techniques described above provide a means of
enriching a screening library with drug-like molecules that
contain functionality relevant to targeting the ATP-binding
site. Another screening objective is to identify a number of
distinct chemical classes. To achieve this goal, we need to
ensure that our screening collection is sufficiently diverse. A
number of computational approaches to measuring molecular
diversity were developed during the 1990s [46]. Most of
these techniques operate by calculating a number of
molecular descriptors [47]. The descriptor values are then
used to define a position in "chemical space" for each
molecule [48]. Molecules are then grouped based on their
proximity in chemical space. While these techniques have
been shown to be applicable in a number of areas [49], it is
sometimes difficult to understand the rationale behind the
groupings. Simpler techniques, such as the frameworks
approach published by Bemis and Murcko [50], create
groupings that are much more chemically intuitive. In the
frameworks approach, outlined in Fig. (5 ) using a
commercial compound as an example, a molecule is
successively reduced to an abstract description of a molecular
scaffold. These abstract scaffold descriptions can then be
used to hierarchically organize molecules. Utilization of
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Fig. (6). Examples of dose-response data obtained from counterscreening (reproduced, by permission, from ref. [53]).

computational tools ensures that whether through
acquisition, library synthesis, or structure-based drug design,
the compounds that build the kinase collection have an
increased probability of producing screening hits that can be
rapidly optimized to leads for each kinase.
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Fig. (5). Frameworks approach to describing a scaffold.

High-Throughput Screening

Populating the screening collection with diverse, drug-
like molecules is the first step. The next step is
implementing a screening strategy ensuring that hits with a
range of binding affinities will be found. One strategy is to
screen compounds at lower concentrations (≤ 5 µM) in order

to decrease the number of positives and false positives that
emerge from the screen [51]. The hypothesis is that
screening at higher concentrations (> 10 µM) will identify a
greater number of hits but these hits will be of little value as
leads, since the activity arises from non-specific interactions
with the target. This is clearly a concern, as evidenced by a
recent study that has identified aggregation in solution as a
common mechanism for non-specific inhibitors [52]. To
enable screening at higher compound concentrations, while
avoiding a large number of false positives, a high-
throughput enzymology (HTE) approach should be
implemented. This approach generates quality screening data
at higher compound concentrations (e.g. 30 µM) [53], which
allows the identification of ligands with a wide range of
affinities.

High-throughput enzymology pulls together the
automation used for HTS with enzymological assays more
traditionally used to support medicinal chemistry. For
example, rather than the fixed endpoint assays and IC50
values typically generated by HTS, HTE frequently uses
kinetic assays and generates Ki values. The automation
allows the generation of greater amounts of data and the
enzymological assays produce very high quality data. The
initial hits are identified from the screen as compounds that
show >50% inhibition of the target kinase in the kinetic
assay at a fixed concentration. These hits can immediately be
titrated to determine Ki values using the same assay. The use
of automation greatly facilitates this process. An example of
such data is shown in Fig. (6) for three screening hits that
have been titrated in enzymological screens [53]. Clearly, the
titration curves show that the compounds are behaving
differently. Compound 1 is the most active compound at 30
µM and would be presumed to be the most potent from the
initial HTS data. However, the titration curves show that
both compounds 2 and 3 are partial inhibitors of the target
kinase. This phenomenon is frequently observed for
compounds with poor solubility at higher concentrations. If
compounds 2 and 3 are titrated at lower concentrations, they
will be found to have significantly lower Ki values than
compound 1. More resources are needed since HTE in
conjunction with screening at higher concentrations increases
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Table 1. Standardized Protocol for Confirmation of Hits from High-throughput Screens

Step 1 Medicinal chemists review hits and select candidates for follow-up

Step 2 Purity and identity

➡ Obtain samples of DMSO stock solutions and compound from archive

➡ Evaluate purity by analytical HPLC

➡ Determine molecular weight by mass spectrometry

➡ NMR confirmation of structure

Step 3 Purification of a sample from the archive

Step 4 Enzyme inhibition

➡ Determine Ki

➡ Reversible

➡ Competitive with ATP

Step 5 Evaluate SAR for other analogs in the screen

Step 6 Purchase available analogs from commercial sources

Step 7 Review literature on compound class

➡ Known synthetic routes

➡ Initial assessment of patent literature

➡ Evaluate known physical and biological properties

Step 8 Resynthesize hit and compare to previous results

➡ Purity and identity

➡ Enzyme inhibition

Step 9 Synthesize a set of analogs

➡ Evaluate SAR

➡ Utility of synthetic route for generation of analogs

the number of positives [51]. However, the quality of the
data generated by the HTE approach aids in the identification
of false negatives due to poor compound solubility and
allows better characterization of the compounds in the
screening collection.

Hit Confirmation

HTS run at higher concentrations increases the number of
hits and their potency range. However, follow-up work is
still required to remove false positives and identify the
highest quality hits. Starting with a screening collection of
quality, drug-like compounds should reduce the numbers of
false positives resulting from impurities, reactive functional
groups, and poor physical properties. Consequently the
effort required to identify false positives is significantly
reduced. Unfortunately, no algorithm or selection protocol is
100% effective. For this reason, a standard follow-up
strategy (Table 1) is implemented to ensure that hits from
every screen are assessed consistently and efficiently.

The first step addresses a deficiency that will exist in any
algorithm that is used to assess the drug-likeness of a
compound, which is the intuition and knowledge base that
an experienced medicinal chemist brings to the process [38].
Years of synthetic and drug discovery experience are brought
to bear at the very beginning of the process to choose those
hits for follow-up that are most exciting to the medicinal
chemists. The remaining steps are designed to reduce the
number of hits by determining the answers to some simple
questions [27,28]:

• Is the activity reproducible?

• Is the activity an artifact due to an impurity or
functionality in the hit?

• Do analogs show dynamic SAR?

• Is the compound tractable to chemical modification?

The purity and identity of the hits are first addressed
using standard analytical techniques. Compounds found to
be impure must be purified (≥98% by HPLC) and retested.
Although in our experience, a majority of the hits identified
from screening have been competitive inhibitors at the ATP
site, the mechanism of inhibition should be confirmed with
this purified sample.

The SAR of the most promising hits must then be
evaluated. Initial SAR can be derived from analysis of
analogs that are in the screening collection, however, these
data should be augmented through the purchase or synthesis
of additional analogs. Purchased analogs and small libraries
are then assessed in follow-up assays. If a diverse set of
analogs around a hit shows only modest changes of activity
(< 5 fold), then the SAR around this hit is deemed flat and
the hit, along with the scaffold class, becomes a lower
priority for lead optimization with this kinase target. These
compounds should continue to be screened with each new
kinase target since a scaffold that exhibits flat SAR with one
kinase, may show potent inhibition and dynamic SAR with
a different kinase. For this reason, a validated hit can be
either a lead for optimization with a target kinase or a
scaffold that can be expanded to provide leads for other
kinases. Often, a screening hit is both.
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Kinase Leads vs. Scaffolds

The difference between a kinase lead and a scaffold is
subtle but important. As others have noted, a lead is a
starting point for medicinal chemistry optimization [27,28].
Medicinal chemists pursue a specific target kinase and, often
a specific indication; therefore, the team works towards a
defined compound profile (e.g. potency, selectivity, dosing
route, and metabolism). Certainly one of the goals of an
optimized lead is to use this compound as a chemogenomic
tool to validate the role of a given target kinase in the
proposed indication. At this stage, issues surrounding
formulation and route of administration are less important;
any dosing route (e.g. IV, IP, SC, and PO) that achieves
sufficient exposure in the animal model is adequate. The
compound should have sufficient selectivity to ensure that
pharmacological activity is achieved through inhibition of
the target kinase. As the lead compound is optimized, a
balance of potency, specificity, and physical properties needs
to be achieved. This balance is dependent upon the desired
compound profile, which will be dictated by the therapeutic
indication and route of administration. For these and other
reasons, the chemistry efforts during lead optimization will
be highly focused and directed. Pursuing a lead as a kinase
inhibitor scaffold, however, will have a different set of
goals.

One of the main goals for exploration of a kinase
inhibitor scaffold is to build a diverse set of drug-like
molecules around the scaffold. This is accomplished by
application of computational tools to the virtual library of
synthetic targets. Only those compounds that survive the
filtering process are then synthesized. The resulting library
becomes part of the kinase screening collection and is used
in all future kinase screens. In this way, the expanding
database contains potency and selectivity data for all
compounds with every kinase assayed. With sufficient
diverse examples from a scaffold class, a high-throughput
enzymology approach to screening yields SAR for both
potency and selectivity directly from HTS. Using this
information, medicinal chemists can simultaneously evaluate
multiple hits from different scaffold classes to determine
which scaffold class offers the shortest path to a potent and
selective lead. The power of this approach lies in the
diversity and drug-like properties of the kinase collection
along with the potency and selectivity data that have been
generated for each compound.

SELECTIVITY PROFILING AND DATA
MANAGEMENT

Inhibitor potency and selectivity data are important for
the accurate interpretation of subsequent in vitro and in vivo
assays performed with inhibitors during target validation. A
recent publication by Davies clearly illustrates this point
[54]. Twenty-eight commercially available compounds,
reported to be selective protein kinase inhibitors, were
screened against a broad panel of kinases. Several
compounds were found to be less selective than previously
thought and some inhibited non-target kinases more potently
than the kinases for which they were reported to be selective.
Another recent report determined that PP1, a reported
selective inhibitor of Src family kinases (Src IC50 = 170

nM; Lck IC50 = 5 nM; Fyn IC50 = 6 nM [55]), also inhibits
c-Kit (IC50 ≈ 75 nM) [56]. The use of such compounds in
the exploration of biochemical pathways and target
validation will yield data that may be misinterpreted.

Advances in instrumentation have provided throughput
and efficiency such that large sets of compounds can be
assayed quickly against a multitude of targets. Even with all
the automation at hand, one still cannot realistically assay
each compound against every target family member,
particularly where the family is as large as the kinases.
Therefore, careful consideration must be given to choosing a
sufficiently broad "fingerprint" panel of kinases to drive a
drug discovery effort.

A gene-family approach can benefit from the use of
essentially the same format for all assays in the screening
panel. This can result in substantial savings in assay
development time, cost, and labor. Spectrophotometric
assays are reliable, less prone to interference, and easily
implemented [51,57,58]. For kinases it is possible to utilize
a spectrophotometric assay, in which the production of ADP
by the kinase is coupled to the oxidation of NADH to NAD
[59]. This assay format can serve as the basis for most HTE
and medicinal chemistry assays. A coupled-enzyme assay
can require high concentrations of enzyme to obtain
sufficient spectrophotometric readout. Some kinases are
difficult to express and purify in large quantities; therefore,
assays requiring high enzyme concentrations may not be
feasible. For these kinases, there are a number of radiometric
and fluorescence-based assays that can be used, which have
the advantage of yielding robust signals even at low enzyme
concentrations.

Once the profiling assays have been established, it is
necessary to consider whether to generate Ki's for compounds
with each kinase or to counter screen at one or two inhibitor
concentrations vs. kinases other than the primary target. Ki
values are more reliable and reproducible, since they are
determined from multiple data points obtained over a range
of inhibitor concentrations. Since a Ki is independent of the
substrate concentrations used in the assay, data from two (or
more) different sources can be compared. However, for a
variety of reasons, one may measure percent inhibition at
one or two concentrations. Percent inhibition values can be
converted to apparent Ki values assuming competitive
inhibition of ATP binding. However, these data should be
interpreted conservatively, therefore, it is preferable to assign
a Ki range rather than a specific Ki.

For the examples shown in Table 2, each compound was
screened at 10 µM and 2 µM against a representative set of
fourteen kinases. The percent inhibition data were converted
to approximate Ki's and then codified as 2 (Ki <1 µM), 1
(1µM < Ki < 5 µM), and 0 (Ki >5 µM), which broadly
classifies the compounds in terms of the activity against
each kinase in the panel. In Table 2, compound V-07 stands
out as a non-selective inhibitor as it scores a 2 for 13 out of
14 kinases. This inhibitor is staurosporine, a known and
promiscuous inhibitor of protein kinases. Conversely,
examples V-13  and V-16  stand out as very selective
inhibitors, since they only score a 2 for one kinase and 0 for
the other 13 kinases. This summary format is a convenient
way to visualize inhibitor selectivity and potency versus a
panel of kinases.
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Table 2. Selectivity Profile of a Set of Kinase Inhibitors Against Fourteen Kinases

Compd. AKT3 AR2 CDK2 ERK2 GSK3 JNK3 KDR lck MK2 MEK1 p38 src ZAP70 PKA Activity
Index

Selectivity
Index

Inhibitor
Score

V-01 0 0 2 0 2 1 0 0 0 0 0 0 0 0 2 0 7 9 5 9

V-02 0 1 0 0 0 1 2 2 0 2 2 2 0 1 5 2 4 3 -9

V-03 0 0 0 0 2 2 0 0 0 0 2 0 0 0 2 1 7 9 5 7

V-04 0 2 2 1 2 2 1 0 0 1 1 1 0 0 5 5 3 6 -20

V-05 0 2 1 0 2 2 0 1 0 1 0 1 0 1 4 8 4 3 -5

V-06 0 2 1 0 2 1 2 2 0 1 0 2 0 0 5 2 4 3 -9

V-07 2 2 2 2 2 2 2 2 2 2 0 2 2 2 9 3 7 -86

V-08 0 1 2 1 2 2 1 1 0 0 0 1 1 1 5 9 2 9 -30

V-09 0 2 2 1 2 2 2 2 1 2 0 2 0 1 7 3 2 1 -52

V-10 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 6 7 9 6 3

V-11 0 2 1 0 0 0 2 2 0 2 0 2 0 0 4 1 5 7 1 6

V-12 1 2 1 2 2 1 1 2 1 0 0 2 0 2 7 0 2 1 -48

V-13 0 0 0 0 0 0 0 0 0 2 0 0 0 0 7 9 3 8 6

V-14 0 2 2 0 2 0 2 2 0 1 0 2 0 1 5 4 4 3 -11

V-15 0 1 0 0 2 0 0 1 0 0 0 2 0 0 2 5 7 1 4 6

V-16 0 0 0 0 0 2 0 0 0 0 0 0 0 0 7 9 3 8 6

V-17 0 2 2 0 2 1 2 1 0 0 0 2 0 0 4 6 5 0 4

V-18 0 0 1 1 2 2 0 0 0 0 2 0 0 0 3 2 6 4 3 2

V-19 2 1 1 1 1 0 0 0 1 0 0 0 0 0 3 4 5 7 2 3

Inhibitor codes calculated for each compound as outlined in the text

The coded data in Table 2 can be further reduced into one
or two parameters that describe the characteristics of each
inhibitor more comprehensively. Since any reasonable
definition of the "activity" of an inhibitor requires
consideration of both its overall potency and its range of
activity, the characteristics of each inhibitor can be defined
in terms of two parameters, the inhibitor activity index, AI
(Eqn. 1) and the selectivity index, SI (Eqn. 2). The inhibitor
activity index can be regarded as a composite value, which
takes into account the number of kinases, NI, in a given
panel inhibited by the compound (score of 1 or 2), the total
number of kinases in the panel, NT, and the sum of the
scores for that compound in the panel, Csum.

Eqn. 1 AI = [(2NI + Csum)/4NT] x 100

Eqn. 2 SI = {1 – [NI/(NT –1)]} x 100

Eqn. 3 I* = SI - AI

The value of AI varies between 0 and 100 and the
magnitude of AI correlates directly with broader activity
towards the kinases in a panel. A lower activity index
implies more restricted activity. The inhibitor selectivity,
SI, also ranges between 0 and 100. The higher the SI value
of a compound, the greater is its selectivity. Inhibitor
activity and selectivity contribute in opposite ways in
defining the overall potency of an inhibitor as it undergoes
medicinal chemistry optimization; therefore, an additional
parameter called inhibitor score, I* (Eqn. 3) is used. The
value of I* can fall between –100 and 100. A compound
with a large, negative inhibitor score will be a non-specific
inhibitor, while the compound with a large, positive value

would be highly selective. As shown in Table 2, the
selectivity data for compounds have been processed to yield
the parameters. The inhibitor scores in Table 2 are plotted in
Fig. (7). The designation of "regions of selectivity and non-
selectivity" is arbitrary; however, these empirical
formulations provide a method of gauging and comparing
the in vitro potency and selectivity of inhibitors. These
simple visualization tools aid the medicinal chemist in
evaluating progress during lead optimization (e.g. AI
decreases, SI increases, and I* is maximized) or in
comparing hits from HTS.

Inhibitor-based ATP Site Homology

Affinity data for a diverse collection of inhibitors can be
used to analyze the ATP sites of different targets. The
traditional way to estimate this relatedness is through amino
acid homology and has been performed for the human
kinome[4]; however, this measure can be further refined for
the purpose of drug design by using the inhibitor affinity
data. Earlier work has suggested that affinity fingerprinting
with small molecules could be used to measure similarity
between proteins [60]. Subsequently, Frye proposed that
groups of kinases that are inhibited by ATP competitive
inhibitors may be very different from groupings based on
amino acid homology or biochemical function [61]. This
approach is termed structure-activity relationship homology
(SARAH) and uses small molecules to sort members of a
gene family. We have performed a similar analysis for the
ATP site of kinases based on several years of kinase library
synthesis and inhibitor screening.
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Fig. (7). A graphical representation of the inhibitor scores from Table 2.

Fig. (8). (a) Thirteen kinases were clustered according to their sequence homology. This can be compared to (b) the same kinases
clustered according to their SAR homology.

For this analysis, only Ki values determined by titrations
were used. Compounds were excluded if inhibition data on
fewer than three kinases were available and kinases were
excluded if fewer than 150 active (Ki <2.5 µM) inhibitors
were available. With the resulting set of 4029 kinase
inhibitors and thirteen kinases, a matrix of codes (0, 1 and 2
for >2.5 µM, 0.25 – 2.5 µM, and <0.25 µM, respectively)
was generated. The definition of these codes differs from the
codes above due to the larger number of titrations carried out

at lower inhibitor concentrations in these Ki determinations.
These codes were then used to analyze the similarity between
kinases (details of this analysis will be published elsewhere).
The results of this analysis suggest that kinase families
based on SAR homology will in fact be very different from
those based on sequence similarity or shared biochemical
function. Fig. (8a) shows the clustering of the 13 kinases
from the data set based on sequence similarity and Fig. (8b)
shows the same clustering based on SAR similarity. While
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there are some similarities -- the closely related kinases Src
and Lck cluster with both methods -- for the most part the
two clusters are very different.

While it seems surprising at first to find such poor
correlation between sequence similarity and kinase inhibition
similarity, there are some fundamental reasons why this
might be expected. First, there are the general limitations of
sequence similarity analysis to be considered. Sequence
analysis does not take into account whether the side-chain of
a residue points into the active site or how flexible the active
site is within a given stretch of sequence. Both of these
factors will strongly influence ligand binding and have a
large effect on binding site similarity that is not reflected in
sequence similarity. There are at least two extreme cases
reported where a single amino acid mutation radically alters
the specificity profile of a given kinase inhibitor. In the first
case, the mutation of residue 105 in ERK2 leads to a greater
than 25,000-fold sensitization of this enzyme to the selective
p38 inhibitor, SB202190 [18,62]. More recently, it has been
shown that mutation of the corresponding residue in the Flt-
3 and PDGFβ receptor tyrosine kinases can completely
invert the selectivity of STI-571 towards these two kinases
[63]. Given the extreme sensitivity of kinase inhibition to
the mutation of a single active site residue, it should not be
surprising that the overall active site sequence similarity
serves as a poor predictor of inhibition similarity.

Target Hopping

One of the underlying assumptions of chemogenomics is
that inhibitor analogs will bind to similar targets within a
gene family. Inhibitor profiling versus a kinase panel has
shown this assumption to be true for the kinase gene family.
The similarity of the ATP site was originally used to argue
that kinases were poor targets because they bind ATP in a
similar configuration and might bind inhibitors with equal
affinity, making selectivity difficult to achieve. However we
now know that kinases possess a rich variety of shape
variations contiguous with the ATP-binding site that enables
the design of selective inhibitors. We also know that the
degree of similarity between ATP-binding sites can be used
to our advantage in identifying scaffolds with binding
motifs recognized by many kinase targets. The combination
of the similarity of kinase ATP-binding sites with the
structural differences in close proximity makes it likely that
once an inhibitor is found for a single kinase, it will be
possible to find analogs of that ligand which inhibit other
kinases. We refer to this as "Target Hopping," which allows
the use of a kinase inhibitor scaffold across multiple targets
within the family.

As an example of compounds from the same scaffold
hitting different kinases, consider the 3-Methylene-1,3-
dihydro-indol-2-one scaffold shown in Fig. (9 ). A
substructure search of the iddb3 database (www.iddb3.com)
finds at least 60 different patents from more than 10 different
organizations. These patents are directed against at least 14
different kinase targets (including c-kit, CDK1-9, c-Src,
EGF, FGFR1, Flk-GST, GSK-3β, FRK, IGF, JNK, PDGF,
Raf, TrkA, VEGF) and 2 non-kinase targets (GAR
transformylase and the 5-HT receptor). A similar analysis
could easily be performed for several other prominent kinase
inhibitor scaffolds. Once a compound in a chemical class is

discovered to be an inhibitor for a target in a gene family,
screening compounds in the same inhibitor class against
targets within the same gene family has increased odds of
success.

N

H

O

Fig. (9). 3-Methylene-1,3-dihydro-indol-2-one.

Scaffold Morphing

Chemogenomics enables the use of a combination of
inhibitor profiling and x-ray crystallographic data to predict
the structure modifications of an inhibitor of one kinase that
will enable binding to the active site of a different kinase.
This gives rise to a drug design process that can generate
new scaffold variations not envisioned by considering only a
single target. The ability to use kinase structural information
to design new scaffolds as kinase inhibitors is referred to as
"scaffold morphing." This process relies on an understanding
of several factors: (1) how the three-dimensional structures of
different kinases overlap; (2) the three-dimensional structure
for an inhibitor bound to a kinase; (3) an understanding of
the theoretical binding orientation of an inhibitor to a
different kinase; and (4) the ability to understand how
structural changes or "morphing" of the inhibitor would be
expected to improve the binding affinity to the new kinase.
The final section of this review will present specific
examples of "hopping" a scaffold from one kinase to another
and also examples of using structural insights for
"morphing" a scaffold into a new inhibitor class.

CHEMOGENOMIC EXAMPLE: DESIGN OF
INHIBITORS FOR THE SAPKs

This section highlights the discovery efforts leading to a
potent, selective p38 mitogen activated protein (MAP)
kinase inhibitor, VX-745 (Fig. (4)). Structural studies
focused on producing a detailed understanding of the bound
crystal structure of VX-745 in complex with p38. The
molecular basis for understanding both the potency and
selectivity of the compound coupled to the utilization of the
chemogenomic approach and tools described above, served
as a platform that provided both alternate scaffolds for p38
as well as new classes of inhibitors for other kinases.

Inhibitors of p38 block the production of the pro-
inflammatory cytokines TNF-α and IL-1β and are effective
in animal models of sepsis and arthritis [64]. TNF-α and IL-
1β are inducible, pleiotropic cytokines and are central
regulators of immune and inflammatory responses [65].
Over-expression of TNF-α  and IL-1β is associated with
human diseases [66,67] such as rheumatoid arthritis, Crohn's
disease, psoriasis, fever, lethal shock, tissue injury, and
weight loss. Protein therapeutics, such as Etanercept (a
soluble TNF-α  receptor) [68,69], and Infliximab (a
monoclonal antibody to TNF-α ) [70-72] have been used
clinically for the treatment of rheumatoid arthritis and
Crohn's disease. Furthermore, dual inhibition of both TNF-
α and IL-1β using protein antagonists produced synergistic
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Fig. (10). Active site of p38 in complex with VX-745.

Fig. (11). The structure of the apo, unphosphorylated form of
p38 is compared with the refined structure of the VX-745
complex. Backbone rotation circumvents a potential clash
between Met 109 carbonyl and the inhibitor carbonyl and
allows the backbone amide nitrogen of Gly110 to donate a
proton to the inhibitor carbonyl.

effects in animal models of arthritis and osteoporosis,
indicating potential clinical and commercial benefits in
simultaneously blocking both cytokines [99].

Pyridinylimidazole compounds, exemplified by SB
203580 and VK-19911 in Fig. (4), block the production of
IL-1β and TNF-α  from monocytes stimulated by LPS
through the inhibition of p38 [18,73]. These compounds
have been used as tools to investigate the role of p38 MAP
kinase in intracellular signal transduction pathways and have
provided a structural understanding of p38 inhibition. Both
compounds are selective for p38α  and p38β, and do not
inhibit p38γ, p38δ, or other MAP kinase family members,
such as the extracellular-signal regulated kinases (ERKs) or
most isoforms of the c-Jun N-terminal kinases (JNKs) [74-
76].

The crystal structure of unphosphorylated p38 MAP
kinase bound to VK-19911 has been reported [18]. Analysis
of this co-complex proved to be a powerful tool for the
discovery of novel inhibitors of p38. Utilizing lead
molecules from the literature, including ATP analogs and
pyrimidinyl imidazoles, virtual screening of the available
chemical databases provided a directed library of compounds
as potential p38 ATP site inhibitors (Bemis, G. W., Vertex
Pharmaceuticals, Inc., personal communication). The
compounds selected by this process had similar shape yet
differing chemical connectivity when compared to the virtual
leads. Using this method, we identified several low
micromolar leads and focused on a novel bicyclic pyridazine
scaffold that ultimately yielded VX-745 [77].

Table 3. VX-745 Selectively Inhibits p38αααα  MAP Kinase

Kinase IC50 (µM)

p38- α 0.009

p38-β 0.22

p38-γ >100

p38-δ >100

ERK2 >100

JNK3 >100

lck >20

p60c-src >20

fyn >20

MAPKAP K-2 >20

VX-745 is a potent and specific inhibitor of p38α  with
an IC50 of 9 nM (Table 3). The compound is 24-fold less
potent against p38β and displays no appreciable inhibition
of p38γ or p38δ, even at a concentration of 100 µM. To
understand the molecular basis for the potency and
selectivity of VX-745, the X-ray crystal structure of
unphosphorylated p38 MAP kinase bound to VX-745 was
solved and is shown in Fig. (10). VX-745 forms hydrogen
bonds with the backbone amide nitrogen atoms of two hinge
residues, Met109 and Gly110. A more detailed structure in
Fig. (11) shows that, relative to the conformation in the
unliganded structure, a 180° rotation of the Gly110 carbonyl
group occurs to allow the hydrogen bond between the
inhibitor and Gly110. The rotation removes an unfavorable
contact and permits the backbone amide nitrogen of Gly110

to donate a proton to the inhibitor carbonyl at C-6. The 2,4-
difluorophenyl ring of VX-745 occupies a hydrophobic
pocket and makes van der Waals contacts with multiple
residues. These contacts are essentially identical to the van
der Waals interactions between the para-fluoro phenyl ring of
VK-19911 and p38 [18]. As observed for VK-19911, Thr106
in Fig. (10) rotates 120° about χ-1. This rotation alters the
position of the γ-hydroxyl moiety and generates additional
hydrophobic contacts with the fluorophenyl ring. The
interaction between the 2,6-dichlorophenyl ring of VX-745
and p38 is stabilized by van der Waals interactions. Each
chlorine atom occupies a hydrophobic pocket and the phenyl
ring makes favorable van der Waals interactions with
residues Gly110, Ala111 and Asp112. The para position of
this ring faces bulk solvent.

Based upon the structural features described above for
VX-745 and VK-19911, it is clear that the rotation about the
side chain of Thr106 plays a key role in determining the
selectivity of these compounds for p38. In fact, the larger
side-chains at position 106 in p38γ (Met) and ERK2 (Gln)
render these MAP kinases resistant to inhibition by VX-745.
Thus the residue corresponding to Thr106 in other MAP
kinases may be a critical determinant of specificity for VX-
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745. The 2,6-dichlorophenyl ring makes contacts with
Gly110, Ala111, and Asp112, residues that are not

Fig. (13). Crystal structure of an analog of 2 bound to p38.

conserved in other kinases, further enhancing the selectivity
of VX-745. The 180° backbone rotation, shown in Fig. (11),
establishes a favorable hydrogen bond between the inhibitor

carbonyl and the NH of Gly110. The presence of a Gly at
position 110 may permit the backbone rotation, since the φ
and ψ angles for Gly110 in the p38/VX-745 complex
translate to disallowed regions of the Ramachandran plot if
other amino acids are present in this position (i.e. only
Glycine can exist in a low energy conformation with the
angles observed in the complex). A perusal of one database
of aligned kinase sequences shows that less than 10 out of
390 kinases have a Glycine residue in this position [78].
This allows us to speculate that VX-745 and other inhibitors
that utilize this binding motif will achieve good selectivity
against kinases with bulky amino acid side-chains at
position 110. Consistent with the importance of the Gly110
φ/ψ  conformation, a Gly110Asp mutation in p38
significantly reduces binding of VX-745 to the mutant
enzyme (Salituro, F. G., Vertex Pharmaceuticals, Inc.,
personal communication).

While favorable binding interactions are observed in the
crystal structure of VX-745 and p38, one potentially
unfavorable interaction led to a proposed set of new
inhibitors. The crystal structure revealed a close contact
between the N-7 of VX-745 and the carbonyl of residue 108
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Fig. (16). Crystal structure of 6 in (a) p38 vs. (b) JNK3.

that could translate into a detrimental interaction. Models
suggested that a "reduced" scaffold [Fig. (12), compound 2]
would provide an additional favorable hydrogen bond. This
analog was prepared and found to be approximately 20-fold
more potent than the parent. The crystal structure of another
such compound in Fig. (13) shows essentially an identical
binding mode relative to the oxidized parent but with
additional hydrogen bond contacts as highlighted.

PK liabilities of the "reduced" scaffold precluded pursuit
of this series; however, the structural understanding led to
the design of new scaffolds as illustrated in Fig. (14). We
envisioned that scaffold morphing to the ring-opened
compounds (compounds 3-5) could retain both the 3-
dimensional features and the hydrogen bonding capabilities
of the "reduced scaffold" (compound 2). Ring-opened
compounds of this type could be held in a favorable
conformation via an intra-molecular hydrogen bond between

NH2 N

O

Cl Cl

F

F

O

6

JNK3  Ki = 700 nM
p38αααα   Ki = 400 nM

Fig. (15). Chemical structure of 6, an equipotent inhibitor of
p38 and JNK3.

the pyridine nitrogen and the primary amide (or urea) and
retain full hydrogen bonding capability to the enzyme with
the second NH of the amide or urea moiety. The necessity
for a chiral sp3 carbon in place of the C-5 sp2 carbon bearing
the 2,6-dichlorophenyl ring in VX-745, is one major change

between compound 3 and the previous scaffolds. However,
further modification to the N, N-disubstituted urea
(compounds 4 and 5) would flatten the molecule and provide
even closer mimics of VX-745. Modeling also suggested
that the hydrophobic pocket could be accessed by either an
"S-phenyl" substituent at the 5 position of the pyridine
(compound 4) or direct phenyl attachment at the 6 position
as shown for compound 5. Medicinal chemistry exploration
in each of the series outlined in Fig. (14) resulted in potent,
selective compounds for p38 in addition to a wealth of
structural information and SAR [79].

While the majority of compounds in these series were
selective for p38α , some compounds showed cross-
inhibition with other MAP kinases, specifically JNK3.
Compound 6 in Fig. (15) was essentially equipotent for
p38α  and JNK3 (400 nM and 700 nM, respectively), and
the X-ray crystal structures of 6 bound to both kinases were
solved. The structure of the compound bound to p38α  in
Fig. (16a) revealed few surprises relative to other amide and
urea inhibitors in p38α . Similar to related compounds,
binding of this inhibitor class induced a backbone rotation
about Gly110 to accommodate hydrogen bonding between
inhibitor and enzyme. The bound structure of compound 6
in JNK3 in Fig. (16b) was interesting in that, as postulated
from the p38 structures, there was no backbone rotation
about the hinge region at residue Asp150, the equivalent of
Gly110 in p38. Instead, there appeared to be a rotation of the
primary amide of the molecule itself such that favorable
hydrogen bonding interactions with the hinge could be
established without enzyme backbone rotation. This
proposal is based on inference, since the X-ray structure
cannot unambiguously distinguish between the nitrogen and
the oxygen of the primary amide moiety; the distance (2.9-
3.4 Å) and the pairing of hydrogen bond donors/acceptors
versus potential clashes between ligand and enzyme suggests
the amide rotation. In addition, the surprising result that
unambiguously places the fluorophenyl ketone of this
inhibitor in the hydrophobic pocket was striking in that it
was previously thought that this pocket in JNK3 could not
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be accessed due to the steric bulk of the Met146 residue.
Although the scaffold did not formally become a JNK
inhibitor class ("target hop"), it did serve as the starting
point for a strategy to develop dual p38/JNK3 inhibitors.
Dual inhibition as it related to potential therapies for stroke,
addressing both anti-apoptotic component (JNK3) and
inflammatory component (p38) of the disease, was of keen
interest [80-82].
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Fig. (18). SAR exploration for isoxazole-based dual p38/JNK3
inhibitors.

Further directed screening using the established binding
motifs (backbone hydrogen bonding and hydrophobic pocket
binding) resulted in several screening hits in Fig. (17) that
were pursued by medicinal chemistry efforts, one of which

led to the identification of compound 7 [83,84]. Early SAR
indicated that, while less active, compound 8 still retained
significant potency against JNK3. Further exploration of
possible N-substituents subsequently identified compound 9
as a viable lead for further optimization.

Extensive SAR studies of the general structure in Fig.
(18) were guided by SBDD, which was driven by numerous
X-ray crystal structures of enzyme-inhibitor co-complexes.
The medicinal chemistry efforts focused on 6 specific
regions of the molecule, with regions 1, 5 and 6 proving to
be of particular importance for varying the selectivity
profiles of the compounds. Compounds with bulky aromatic
substituents in region 1 displayed dual p38/JNK3 activity.
The binding mode for compounds in this class is nearly
identical for both enzymes including, as predicted, the
region of the hydrophobic pocket gated by Thr106 and
Met146 in p38 and JNK3, respectively. It is assumed that
the energy cost of the movement of Met146 in JNK3 is
sufficiently compensated by the positive binding interaction
of the phenyl group. In addition, compounds with aromatic
substituents in both regions 1 and 6 (e.g. compound 10 in
Fig. (19)) also display strong inhibitory potency against Src-
family kinases. However, replacement of the N-aryl group in
region 6 with a saturated ring, as exemplified by compounds
11 and 12 in Fig. (19), eliminated inhibition of the Src-
family kinases, while maintaining JNK3 and p38 activity.
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The inhibition of Src by compound 10 indicated a potential
"target hop" for this scaffold. These observations were a
starting point for developing a strategy towards the selective
inhibition of Src-family kinases for which there is
significant interest in regards to a variety of therapeutic
indications, such as immunosuppression [85,86]. Indeed,
utilizing the isoxazole starting point and the chemogenomic
strategies discussed, novel classes of potent Src-family
inhibitors have been discovered that select away from
inhibition of other SAPK family members [87].

X-ray crystallography and modeling further suggested
that substitution in region 5 would be an ideal strategy for
addressing the physical properties of the inhibitors without
adversely affecting the enzyme activity. Thus, a series of
compounds (e.g. compound 12 in Fig. (19)) containing
amine moieties in region 5 were prepared and found to be
more soluble while retaining potent dual JNK3/p38 activity.
These compounds exhibited high aqueous solubility as the
hydrochloride salts and were suitable for dosing in aqueous
vehicles.

Overall, this section has shown the successful application
of the chemogenomic principles that were outlined in the
first part of this review. Computational tools and X-ray
crystallographic structures enabled the identification of
inhibitors of p38α , which produced the selective inhibitor
VX-745. Structure-based understanding of this compound's
binding to the ATP site of p38 allowed morphing of this
scaffold into new p38 inhibitor scaffolds. Because of the
gene family approach to kinases, we found that these new
kinase scaffolds enabled a target hop to another kinase,
JNK3. In a parallel fashion, computational tools applied to
directed screening provided additional chemical leads for
JNK3, which were used by medicinal chemists to drive
structure-based drug design, resulting in novel inhibitor
scaffolds. Again, the gene family approach identified leads
from these scaffolds that inhibited c-Src, which enabled a
target hop to the Src-family of kinases.

Because of the broad, chemogenomic approach to kinase
inhibitor scaffolds, leads identified for just these three
targets, p38, JNK3, and c-Src, resulted in the addition of
well over 2 dozen distinct inhibitor scaffolds to the inhibitor
collection. As these scaffolds expanded the diversity of the
compound collection, counter-screening expanded the
knowledge base on kinase inhibition and selectivity. Much
of this expansion of knowledge was done in parallel
utilizing HTE with multiple kinases. The knowledge base of
inhibitor potency and selectivity was complemented with
structural information from crystallography in as close to
real time as possible. It is readily apparent from the small
number of examples reviewed here that the data for each
kinase target and scaffold class quickly grows and serves to
drive the expansion into new kinase targets. A
chemogenomic approach increases the odds of rapidly
identifying leads from HTS for each kinase target. The
wealth of existing structural and SAR data available for the
leads then facilitates the optimization process to provide the
compounds for validation of those kinases. Following
validation of the kinase as a potential therapeutic target,
these optimized leads are poised for rapid refinement to
provide a compound that is a strong candidate for preclinical
evaluation.

LIST OF ABBREVIATIONS

Abl = Abelson leukemia virus tyrosine kinase

AKT = Protein kinase B

AMPPNP = Adenosine 5'-(β,γ-imido)triphosphate

AR2 = Aurora 2 kinase

Btk = Brutons tyrosine kinase

CDK = Cyclin dependent kinase

CSK = c-Src kinase

DELFIA = Dissociation enhanced fluorescent
immunoassay

EGFR = Epidermal growth factor receptor

Ephb2R = Ephrin b2 receptor

ERK = Extracellular signal-regulated kinase

FGFR = Fibroblast growth factor receptor

FRK = Fyn-related kinase

GSK-3β = Glycogen synthase kinase-3β
Hck = Haematopoietic cell kinase

5-HT = 5-Hydroxytryptamine

HTRF = Homogenous time resolved fluorescence

IGFR = Insulin-like growth factor receptor

IL-1β = Interleukin-1β
INSR = Insulin receptor kinase

KDR = Kinase insert domain receptor/VEGFR2

Kit = Stem cell factor receptor

MK2 or = MAPK-activated protein kinase-2
MAPKAP-
K2

MAPK = Mitogen-activated protein kinase

MEK1 = MAPK kinase

PDGFR = Platelet-derived growth factor receptor

PKA = Protein kinase A

SAR = Structure-activity relationships

TNF-α = Tumor necrosis factor-α
VEGFR = Vascular endothelial growth factor receptor
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